in circulating cell-free DNA from prostate cancer patients. Genome
Biol 2016;17:10
. http://dx.doi.org/10.1186/s13059-015-0864-1.
[9] Wyatt AW, Azad AA, Volik SV, et al. Genomic alterations in cell-free
DNA and enzalutamide resistance in castration-resistant prostate
cancer. JAMA Oncol 2016;2:1598–606
. http://dx.doi.org/10.1001/ jamaoncol.2016.0494.
[10] Azad AA, Volik SV, Wyatt AW, et al. Androgen receptor gene aberra-
tions in circulating cell-free DNA: biomarkers of therapeutic resistance
in castration-resistant prostate cancer. Clin Cancer Res 2015;21:2315–
24
. http://dx.doi.org/10.1158/1078-0432.CCR-14-2666.
[11] Romanel A, Gasi Tandefelt D, Conteduca V, et al. Plasma AR and
abiraterone-resistant prostate cancer. Sci Transl Med 2015;7:
312re10
. http://dx.doi.org/10.1126/scitranslmed.aac9511 .[12] Scher HI, Lu D, Schreiber NA, et al. Association of AR-V7 on circu-
lating tumor cells as a treatment-specific biomarker with outcomes
and survival in castration-resistant prostate cancer. JAMA Oncol
2016;2:1441–9
. http://dx.doi.org/10.1001/jamaoncol.2016.1828 .[13] Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to
enzalutamide and abiraterone in prostate cancer. N Engl J Med
2014;371:1028–38
. http://dx.doi.org/10.1056/NEJMoa1315815.
[14] Qu F, Xie W, Nakabayashi M, et al. Association of AR-V7 and
prostate specific antigen RNA levels in blood with efficacy of
abiraterone acetate and enzalutamide treatment in men with
prostate cancer. Clin Cancer Res. In press.
http://dx.doi.org/10. 1158/1078-0432.CCR-16-1070.
[15] Del Re M, Biasco E, Crucitta S, et al. The detection of androgen
receptor splice variant 7 in plasma-derived exosomal RNA strongly
predicts resistance to hormonal therapy in metastatic prostate
cancer patients. Eur Urol 2017;71:680–7
. http://dx.doi.org/10. 1016/j.eururo.2016.08.012 .[16] Chen EJ, Sowalsky AG, Gao S, et al. Abiraterone treatment in castra-
tion-resistant prostate cancer selects for progesterone responsive
mutant androgen receptors. Clin Cancer Res 2015;21:1273–80.
http://dx.doi.org/10.1158/1078-0432.CCR-14-1220 .[17] Carreira S, Romanel A, Goodall J, et al. Tumor clone dynamics in
lethal prostate cancer. Sci Transl Med 2014;6
. http://dx.doi.org/10. 1126/scitranslmed.3009448, 254ra125-5.
[18] Robinson D, Van Allen EM, Wu Y-M, et al. Integrative clinical
genomics of advanced prostate cancer. Cell 2015;161:1215–28.
http://dx.doi.org/10.1016/j.cell.2015.05.001.
[19] Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X. Mechanisms of
the androgen receptor splicing in prostate cancer cells
2013;33:3140–50.
http://dx.doi.org/10.1038/onc.2013.284.
[20] Sun S, Sprenger CCT, Vessella RL, et al. Castration resistance in
human prostate cancer is conferred by a frequently occurring
androgen receptor splice variant. J Clin Invest 2010;120:2715–
30
. http://dx.doi.org/10.1172/JCI41824.
[21] Watson PA, Chen YF, Balbas MD, et al. Constitutively active andro-
gen receptor splice variants expressed in castration-resistant pros-
tate cancer require full-length androgen receptor. Proc Natl Acad
Sci U S A 2010;107:16759–65
. http://dx.doi.org/10.1073/pnas. 1012443107 .[22] Hu R, Dunn TA, Wei S, et al. Ligand-independent androgen receptor
variants derived from splicing of cryptic exons signify hormone-
refractory prostate cancer. Cancer Res 2009;69:16–22
. http://dx. doi.org/10.1158/0008-5472.CAN-08-2764.
[23] Bernemann C, Schnoeller TJ, Luedeke M, et al. Expression of AR-V7
in circulating tumour cells does not preclude response to next
generation androgen deprivation therapy in patients with castra-
tion resistant prostate cancer. Eur Urol 2017;71:1–3
. http://dx.doi. org/10.1016/j.eururo.2016.07.021.
[24] Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM. Intragenic
rearrangement and altered RNA splicing of the androgen receptor
in a cell-based model of prostate cancer progression. Cancer
Res 2011;71:2108–17
. http://dx.doi.org/10.1158/0008-5472. CAN-10-1998.
[25] Li Y, Hwang TH, Oseth LA, et al. AR intragenic deletions linked to
androgen receptor splice variant expression and activity in models
of prostate cancer progression. Oncogene 2012;31:4759–67
. http:// dx.doi.org/10.1038/onc.2011.637.
[26] Berger MF, Lawrence MS, Demichelis F, et al. The genomic com-
plexity of primary human prostate cancer. Nature 2011;470:214–
20
. http://dx.doi.org/10.1038/nature09744.
[27] Rausch T, Zichner T, Schlattl A, Stu¨ tz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-
read analysis. Bioinformatics 2012;28:i333–9
. http://dx.doi.org/10. 1093/bioinformatics/bts378.
[28] Nyquist MD, Li Y, Hwang TH. TALEN-engineered AR gene rearran-
gements reveal endocrine uncoupling of androgen receptor in
prostate cancer. Proc Natl Acad Sci U S A 2013;110:17492–7.
http://dx.doi.org/10.1073/pnas.1308587110 .[29] Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing
of a novel androgen receptor exon generates a constitutively active
androgen receptor that mediates prostate cancer therapy resis-
tance. Cancer Res 2008;68:5469–77
. http://dx.doi.org/10.1158/ 0008-5472.CAN-08-0594 .[30] Henzler C, Li Y, Yang R, et al. Truncation and constitutive activation
of the androgen receptor by diverse genomic rearrangements in
prostate cancer. Nature Commun 2016;7:13668
. http://dx.doi.org/ 10.1038/ncomms13668.
E U R O P E A N U R O L O G Y 7 2 ( 2 0 1 7 ) 1 9 2 – 2 0 0
200




